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Abstract 

 

New families of life distributions Based on the Exponential Better than Used 

Concept are introduced. Definitions and Basic Results are stated. Several 

properties of these classes are presented, including the preservation under 

convolution and mixing. Testing exponentially against exponential better (worse) 

than used in convex order (2) , EBUC(2),  is proposed by using moment 

inequalities. The Pitman asymptotic efficiency (PAE) is discussed. Selected 

critical values are tabulated for selected sample sizes. Application with real data is 

given to illustrate the theoretical results. 

 

Keywords: Exponential, convolution, mixing and EBU 

 

1 Introduction 
 

The applications of classes of life distributions can be seen in reliability, 

engineering, replacement analysis, inventory and queuing theory, biological 

science, maintenance and biometrics. Various classes of life distributions and their 

dual have been introduced in reliability to describe several types of deterioration 

(improvements). Therefore, statisticians and reliability analysts have found it 

useful to categorize life distributions according to different aging properties. 

These classes have been considered by different authors and based on two 

concepts: 
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(i) The failure rate classes, e.g. IFR, IFRA, NBUFR,…,etc. 

(ii) The conditional survival classes, e.g., NBU, NBUE, HNBUE, NBUC, 

NBUCA, DMRL,…,etc. 

Elbatal (2002) introduced a class of life distribution called, exponential 

better than used (EBU) and its dual class (EWU). He investigated their 

relationship to other classes of life distribution. He discussed the closure 

properties under reliability operations, moment inequality and under shock model. 

Mahmoud et al. (2005) introduced a class of life distribution called, exponential 

better than used average EBUA and its dual EWUA. He discussed the closure 

properties under reliability operations, formation of parallel system and under 

shock model. 

 

2 Definitions and Basic Results 
 

Some classes of life distributions are now introduced.  Let X and Y be two 

non-negative random variables with distribution functions F(x) and F(Y), and 

survival functionsF̅(X) andF̅(Y), respectively. Define𝑁 = {0,1, … }, let {𝑃𝑘, 𝐾𝜖𝑁} 

be a discrete distribution and define the probability of survival as �̅�𝑘 = 1 − 𝑃𝑘 

with �̅�0 = 1 and 𝑃𝑘 = �̅�𝑘 − �̅�𝑘−1, where 𝑘 ≥ 1. Clearly, �̅�𝑘 ≥ �̅�𝑘+1 ≥ �̅�𝑘+2 ≥ ⋯ 

 

Definition 2.1 

A discrete distribution P with finite mean µ is called geometric better than used or 

GBU (geometric worse than used or GWU) if 

 

�̅�(𝑖 + 𝑗) ≤ (≥)�̅�(𝑗) (1 −
1

𝜇
)

𝑖

 ∀ 𝑖, 𝑗 ∈ 𝑁 .                                                                    (1) 

 

Definition 2.2 

A life distribution F (i.e., F (0) =0) is called exponential better than used (2) 

(EBU2)  and its dual EWU2 if 

 

∫ �̅�(𝑥 + 𝑡) 𝑑𝑡 ≤ (≥)  𝑒
−

𝑥
𝜇 ∫ �̅�(𝑡)

𝑢

0

𝑑𝑡

𝑢

0

           ∀ 𝑢 > 0 .                                           (2) 

 

Definition 2.3 

A discrete distribution P with finite mean µ is called geometric better than used 

(2) or GBU2 (geometric worse than used (2) or GWU2) if 

 

∑ �̅�(𝑖 + 𝑗) ≤ (≥)(1 −
1

𝜇
)𝑖 ∑ �̅�(𝑗)

𝑘

𝑗=0

𝑘

𝑗=0

 ∀  𝑖, 𝑗, ∈ 𝑁.                                                  (3) 
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Definition 2.4  

A life distributions F i.e., F (0) =0 is called exponential better than used in convex 

order one EBUC(1) if   

 

∫ �̅�(𝑥 + 𝑡)𝑑𝑥
∞

𝑢

≤ 𝜇 𝑒
−

𝑢
𝜇�̅�(𝑡).                                                                                       (4)  

 

Definition 2.5 

A discrete distribution {𝑃𝑘, 𝑘N, }  is said to be geometric better than used in 

convex order one GBUC (1) if, 

 

∑ �̅�(𝑖 + 𝑗)

∞

𝑖=𝑘

≤ �̅�(𝑗) ∑ (1 −
1

𝜇
)

𝑖

.                                                     

∞

𝑖=𝑘

                            (5) 

 

Definition 2.6  

A life distribution F i.e. F (0) =0 is called exponential better than used in convex 

order two EBUC(2) if   

 

∫ �̅�(𝑥 + 𝑡)𝑑𝑡
∞

𝑢

≤ 𝑒
−𝑥
𝜇 ∫ �̅�(𝑡)

∞

𝑢

𝑑𝑡.                                                                               (6)  

 

Definition 2.7 

A discrete distribution {�̅�𝑘, 𝑘N, }  is said to be geometric better than used in 

convex order two GBUC (2) if, 

 

∑ �̅�(𝑖 + 𝑗)

∞

𝑗=𝑘

≤ (1 −
1

𝜇
)

𝑖

∑ �̅�(𝑗).

∞

𝑗=𝑘

                                                                               (7)   

 

Definition 2.8 

A life distributions F (i.e., F (0) =0) is called exponential better than used in 

average (2) (EBUA(2))  and its dual EWUA(2) if   

 

∫ ∫ �̅�(𝑥 + 𝑡)𝑑𝑥 𝑑𝑡 ≤ (≥) 𝜇 ∫ 𝑒
−

𝑥
𝜇

𝑢

0

𝑑𝑥

𝑢

0

∞

0

.                                                                 (8)  

 

Definition 2.9 

A discrete distribution {𝑃𝑘, 𝑘N, } is said to be GBUA2 (GWUA2) if 
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∑ ∑ �̅�(𝑖 + 𝑗)

𝑚

𝑖=0

≤ (≥)𝜇 ∑ (1 −
1

𝜇
)

𝑖

  .                                           

𝑚

𝑖=0

∞

𝑗=0

                            (9) 

 

Theorem 2.1 

If X is GBU (GWU) then X is D-NBUE (D-NWUE) 

 

Proof. For the GBU case similar arguments hold for the GWU case. If X is GBU 

then, the summation with respect to i over (0, ∞) implies that  

 

∑ �̅�(𝑖 + 𝑗) ≤ (≥)�̅�(𝑗) ∑ (1 −
1

𝜇
)

𝑖∞

𝑖=0

∞

𝑖=0

= 𝜇�̅�(𝑗) 

⇔
∑ �̅�(𝑖 + 𝑗)∞

𝑖=0

�̅�(𝑗)
≤ (≥)𝜇 

 

⇔
∑ �̅�(𝑚)∞

𝑚=𝑗

�̅�(𝑗)
≤ (≥)𝜇 

 

Then X is D-NBUE (D-NWUE). 

Theorem 2.2 

If X is GBU (GWU) then X is D-HNBUE (D-HNWUE) 

 

Proof. X is GBU means that  

�̅�(𝑖 + 𝑗) ≤ �̅�(𝑗) (1 −
1

𝜇
)

𝑖

 ∀ 𝑖, 𝑗 ∈ 𝑁. 

 

By getting summation with respect to j over (0, ∞), we get 

∑ �̅�(𝑖 + 𝑗) ≤ (1 −
1

𝜇
)

𝑖

∑ �̅�(𝑗)

∞

𝑗=0

∞

𝑗=0

= 𝜇 (1 −
1

𝜇
)

𝑖

 

⇔ ∑ �̅�(𝑚) ≤

∞

𝒎=𝒊

𝜇 (1 −
1

𝜇
)

𝑖

∀ 𝑖 ∈ 𝑁,  

hence X is D-HNBUE. 

 

3 The Closure Properties 
 

3.1 Convolution  

As an important reliability operation, convolutions of life distributions of a certain 

class are often paid much attention. The closure properties of IFR, NBU, NBUE,  
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and IFRA can be found in Barlow and Proschan (1981). The closure properties of 

class NBUC were pointed out in Cao and Wang (1991) and Hu and Xie (2002). In  

the next theorem the closure property of the class under the convolution operation 

is established. 

 

Theorem 3.1 

Suppose that 𝑃1 and 𝑃2  are two independent GBU life distributions. Then their 

convolution is also GBU 

 

Proof. 

�̅�(𝑖 + 𝑗) = ∑ �̅�1 

∞

𝑧=0

(𝑖 + 𝑗 − 𝑧)𝑝2(𝑧) 

�̅�(𝑖 + 𝑗) = ∑ �̅�1 

∞

𝑧=0

(𝑗 − 𝑧)𝑝2(𝑧) (1 −
1

𝜇
)

𝑖

 = (1 −
1

𝜇
)

𝑖

∑ �̅�1 

∞

𝑧=0

(𝑗 − 𝑧)𝑝2(𝑧) 

             = �̅�(𝑗) (1 −
1

𝜇
)

𝑖

. 

Remark: A similar result can be written for the GWU class. 

 

Theorem 3.2  
Suppose that F1 and F2 are two independent EBU (2) life distributions. Then their 

convolution is also EBU (2). 

Proof 

�̅�(𝑥 + 𝑡) = ∫ 𝐹1̅

∞

0

(𝑥 + 𝑡 − 𝑧)𝑑𝐹2(𝑧). 

By integrating both sides with respect to t, then  

∫ �̅�(𝑥 + 𝑡)𝑑𝑡 = ∫ ∫ 𝐹1̅(𝑥 + 𝑡 − 𝑧)
∞

0

𝑢

0

𝑑𝐹2(𝑧)𝑑𝑡

𝑢

0

 

= ∫ ∫ 𝐹1̅(𝑥 + 𝑡 − 𝑧)𝑑𝑡𝑑𝐹2
̅̅̅(𝑧)

𝑢

0

∞

0

 

≤ ∫ 𝑒
−

𝑥
𝜇  [∫ 𝐹1̅(𝑡 − 𝑧)𝑑𝑡

𝑢

0

] 𝑑𝐹2
̅̅̅(𝑧)

∞

0

 

≤ 𝑒
−

𝑥
𝜇 ∫  [∫ 𝐹1̅(𝑡 − 𝑧)𝑑𝑡

∞

0

] 𝑑𝐹2
̅̅̅(𝑧)

𝑢

0

≤  𝑒
−

𝑥
𝜇  ∫ �̅�(𝑡)

𝑢

0

𝑑𝑡. 

 

Theorem 3.3 

Suppose that P1 and P2 are two independent GBU (2) life distributions. Then their 

convolution is also GBU (2). 
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Proof. 

�̅�(𝑖 + 𝑗) = ∑ �̅�1 

∞

𝑧=0

(𝑖 + 𝑗 − 𝑧)𝑝2(𝑧) 

 

 

By summing with respect to j, then 

  

∑ �̅�(𝑖 + 𝑗)

𝑢

𝑗=0

= ∑ ∑ �̅�1 

∞

𝑧=0

(𝑖 + 𝑗 − 𝑧)𝑝2(𝑧)

𝑢

𝑗=0

 

= ∑ 𝑝2(𝑧) ∑ �̅�1 

𝑢

𝑗=0

∞

𝑧=0

(𝑖 + 𝑗 − 𝑧) 

≤ ∑ 𝑝2(𝑧) ∑ (1 −
1

𝜇
)

𝑖

�̅�1 

𝑢

𝑗=0

∞

𝑧=0

(𝑗 − 𝑧) 

= (1 −
1

𝜇
)

𝑖

∑ ∑ 𝑃2(𝑧)

∞

𝑧=0

�̅�1(𝑗 − 𝑧)

𝑢

𝑗=0

 

= (1 −
1

𝜇
)

𝑖
∑ �̅�(𝑗)𝑢

𝑗=0 . 

 

Theorem 3.4 
Suppose that F1 and F2 are two independent EBUA (2) life distributions. Then 

their convolution is also EBUA (2). 

 

Proof. 

�̅�(𝑥 + 𝑡) = ∫ �̅�1(𝑥 + 𝑡 − 𝑧)𝑑
∞

0

�̅�2(𝑧) 

 

By integrating both sides with respect to x and t, then  

 

∫ ∫ �̅�(𝑥 + 𝑡)𝑑𝑥𝑑𝑡 = ∫ ∫ ∫ 𝐹1̅(𝑥 + 𝑡 − 𝑧)
∞

0

𝑢

0

∞

0

𝑑𝐹2𝑑𝑥𝑑𝑡

𝑢

0

∞

0

 

 ≤ ∫ 𝑒
−

𝑥

𝜇  ∫ ∫ 𝐹1̅(𝑡 − 𝑧)
∞

0

∞

0

𝑢

0
𝑑𝐹2𝑑𝑡𝑑𝑥 

≤ ∫ 𝑒
−

𝑥
𝜇 𝑑𝑥 [∫ �̅�(𝑡)𝑑𝑡

∞

0

]
𝑢

0

≤  𝜇 ∫ 𝑒
−

𝑥
𝜇

𝑢

0

𝑑𝑥. 

 

This proves that F is also EBUA (2). 

Remark: A similar result can be written for the EWUA (2) class.  
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Theorem 3.5 

Suppose that 𝑃1 and 𝑃2 are two independent GBUA2 life distributions. Then their 

convolution is also GBUA2 

Proof. 

�̅�(𝑖 + 𝑗) = ∑ �̅�1 

∞

𝑧=0

(𝑖 + 𝑗 − 𝑧)𝑝2(𝑧) 

∑ ∑ �̅�(𝑖 + 𝑗)

𝑚

𝑖=0

= ∑  ∑ ∑ �̅�1 

∞

𝑧=0

(𝑖 + 𝑗 − 𝑧)𝑝2(𝑧)

𝑚

𝑖=0

∞

𝑗=0

∞

𝑗=0

 

= ∑ ∑ (1 −
1

𝜇
)

𝑖

∑ �̅�1 

∞

𝑧=0

(𝑗 − 𝑧)𝑝2(𝑧)

𝑚

𝑖=0

∞

𝑗=0

= ∑ �̅�(𝑗) ∑ (1 −
1

𝜇
)

𝑖

= 𝜇 ∑ (1 −
1

𝜇
)

𝑖𝑚

𝑖=0

𝑚

𝑖=0

∞

𝑗=0

. 

 

3.2 Mixtures 

Suppose we are given a one-parameter family of life distributions  

{𝐹∝(𝑡), 𝑡 ≥ 0}, where the parameter  ∝≥ 𝑜. Let ∝ be a random variable and let G 

be its distribution function; then, G is said to be a mixing distribution. The 

mixture 𝜑 of the family {𝐹∝}, with respect to G, and the mixture �̅� of {�̅�∝}, are 

defined by 

𝜑 = ∫ 𝐹∝(𝑡)
∞

0
 𝑑𝐺(∝), 𝑡 > 0 and �̅� = ∫ �̅�∝(𝑡)

∞

0
 𝑑𝐺(∝), 𝑡 > 0  

As usual, we assume that the family {�̅�∝} and the mixing distribution G satisfy 

some conditions, and we want to drive the resulting mixture 𝜑 properties. 

 

Theorem 3.6 

 Let P be a mixture of 𝑃𝑙 , 𝑙 ∈ 𝑁, with each 𝑃𝑙 GWU and no two distributions 

𝑃𝑙 , 𝑃𝑘   cross on N. then P is GWU. 

 

Proof. Let 𝑘, 𝑙 ∈ 𝑁,  and g be the mixing p.m.f. By Chebyshev’s inequality  

                     �̅�(𝑖)�̅�(𝑗) = (1 −
1

𝜇
)

𝑖

�̅�(𝑗) 

= [∑ (1 −
1

𝜇𝑘
)

𝑖

𝑔(𝑘)

∞

𝑘=0

] [∑ 𝑃�̅�(𝑗)𝑔(𝑙)

∞

𝑙=0

] 

  

                                    ≤ ∑ (1 −
1

𝜇𝑘
)

𝑖

𝑃𝑘(𝑗)𝑔(𝑘) ≤ ∑ 𝑃𝑘(𝑖 + 𝑗)𝑔(𝑘)

∞

𝑘=0

∞

𝑘=0

 

                                          ≤ ∑ 𝑃𝑘(𝑖 + 𝑗)𝑔(𝑘)

∞

𝑘=0

= �̅�(𝑖 + 𝑗), 

 

which implies that P is GWU. 
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Theorem 3.7 

Let F be a mixture of  𝐹∝ , ∝≥ 𝑜  , with each 𝐹∝  EWU2, and 𝐹∝  no crossing 

property on (0,∞), then F is EWU2. 

 

Proof. By the Chebyshev’s inequality for similarly ordered functions (Hardy, et 

al, 1952, theorem4.3) 

𝑒
−𝑥
𝜇 ∫ �̅�(𝑡) 

𝑢

0

𝑑𝑡 = ∫ 𝑒
−𝑥
𝜇∝

∞

𝑜

 𝑑𝐺(∝) ∫ ∫  �̅�∝(𝑡)

∞

0

𝑢

0

 𝑑𝐺(∝) 𝑑𝑡 

≤  ∫ ∫  𝑒
−𝑥
𝜇∝   �̅�∝(𝑡)

∞

0

𝑢

0

 𝑑𝐺(∝)𝑑𝑡 

≤ ∫ ∫    �̅�∝(𝑥 + 𝑡)

∞

0

𝑢

0

 𝑑𝐺(∝)𝑑𝑡 

                                                  ≡ ∫ �̅�(𝑥 + 𝑡)
𝑢

0
𝑑𝑡, 

 

Then F is EWU2. 

Theorem 3.8  

Let P be a mixture of 𝑃𝑙 , 𝑙 ∈ 𝑁,  with each 𝑃𝑙 GWU2 and no two 

distributions𝑃𝑙 , 𝑃𝑘   cross on N. then P is GWU2. 

 

Proof. Let 𝑘, 𝑙 ∈ 𝑁,   and g be the mixing p. m. f. By Chebyshev’s inequality  

[(1 −
1

𝜇
)

𝑖

] ∑ �̅�(𝑗)

𝑢

𝑗=0

= [∑ (1 −
1

𝜇𝑘
)

𝑖

𝑔(𝑘)

∞

𝑘=0

] [∑ ∑ 𝑃�̅�(𝑗)𝑔(𝑙)

∞

𝑙=0

𝑢

𝑗=0

] 

= {∑ [(1 −
1

𝜇𝑘
)

𝑖

𝑔(𝑘)]

∞

𝑘=0

} [∑ ∑ 𝑃�̅�(𝑗)𝑔(𝑙)

∞

𝑙=0

𝑢

𝑗=0

] 

                                 ≤ ∑ ∑ [𝑃�̅�(𝑗) (1 −
1

𝜇𝑙
)

𝑖

]

∞

𝑙=0

𝑢

𝑗=0

𝑔(𝑙) = ∑ �̅�(𝑖 + 𝑗)

𝑢

𝑗=0

, 

 

which implies that F is GWU2. 

Theorem 3.9 

Let F be a mixture of  𝐹∝ , ∝≥ 𝑜  , with each 𝐹∝  EWUC1, and 𝐹∝  no crossing 

property on (0,∞), then F is EWUC1. 

 

Proof. By the Chebyshev’s inequality for similarly ordered functions (Hardy, et 

al., 1952, Theorem 4.3) 
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�̅�(𝑡) ∫ 𝑒
−𝑥
𝜇  

∞

𝑢

𝑑𝑥 = ∫  �̅�∝(𝑡)

∞

𝑜

 𝑑𝐺(∝) ∫ ∫ 𝑒
−𝑥
𝜇∝

∞

0

∞

𝑢

 𝑑𝐺(∝) 𝑑𝑥 

≤  ∫ ∫  𝑒
−𝑥
𝜇∝   �̅�∝(𝑡)

∞

0

∞

𝑢

 𝑑𝐺(∝)𝑑𝑥 

≤ ∫ ∫    �̅�∝(𝑥 + 𝑡)

∞

0

∞

𝑢

 𝑑𝐺(∝)𝑑𝑥 

                                                ≡ ∫ �̅�(𝑥 + 𝑡)

∞

𝑢

𝑑𝑥. 

Then F is EWUC1. 

Theorem 3.10 

Let P be a mixture of 𝑃𝑙 , 𝑙 ∈ 𝑁,  with each  𝑃𝑙 GWUC1 and no two 

distributions𝑃𝑙 , 𝑃𝑘   cross on N. then P is GWUC1. 

 

Proof. Let 𝑘, 𝑙 ∈ 𝑁,  and g be the mixing p.m.f. By Cebyshev’s inequality  

 

�̅�(𝑗) [∑ (1 −
1

𝜇
)

∞

𝑖=𝑚

𝑖

] = [∑ ∑ (1 −
1

𝜇𝑘
)

∞

𝑖=𝑚

𝑖

𝑔(𝑘)

∞

𝑘=0

] [∑ 𝑃�̅�(𝑗)𝑔(𝑙)

∞

𝑙=0

] 

= {∑ [∑ (1 −
1

𝜇𝑘
)

∞

𝑖=𝑚

𝑖

𝑔(𝑘)]

∞

𝑘=0

} [∑ 𝑃�̅�(𝑗)𝑔(𝑙)

∞

𝑙=0

] 

                                  ≤ ∑ [𝑃𝑘
̅̅ ̅(𝑗) ∑ (1 −

1

𝜇𝑘
)

∞

𝑖=𝑚

𝑖

]

∞

𝑘=0

𝑔(𝑘) 

                                    ≤ ∑ ∑ [𝑃𝑘
̅̅ ̅(𝑗) (1 −

1

𝜇𝑘
)

𝑖

]

∞

𝑘=0

∞

𝑖=𝑚

𝑔(𝑘) 

                                   = ∑ �̅�(𝑖 + 𝑗)

∞

𝑖=𝑚

, 

 

which implies that F is GWUC1. 

Theorem 3.11 

Suppose F is the mixture of  𝐹∝ , ∝≥ 𝑜 , with each 𝐹∝ EWUC2, and 𝐹∝ no crossing 

property on (0,∞), then F is EWUC2. 

 

Proof. By the Chebyshev’s inequality for similarly ordered functions (Hardy, et 

al., 1952, Theorem 4.3) 
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𝑒
−𝑥
𝜇 ∫ �̅�(𝑡) 

∞

𝑢

𝑑𝑡 = ∫ 𝑒
−𝑥
𝜇∝

∞

𝑜

 𝑑𝐺(∝) ∫ ∫  �̅�∝(𝑡)

∞

0

∞

𝑢

 𝑑𝐺(∝) 𝑑𝑡 

≤  ∫ ∫  𝑒
−𝑥
𝜇∝   �̅�∝(𝑡)

∞

0

∞

𝑢

 𝑑𝐺(∝)𝑑𝑡 

≤ ∫ ∫    �̅�∝(𝑥 + 𝑡)

∞

0

∞

𝑢

 𝑑𝐺(∝)𝑑𝑡 

                                                 ≡ ∫ �̅�(𝑥 + 𝑡)

∞

𝑢

𝑑𝑡, 

then F is EWU2. 

Theorem 3.12 

Let P be a mixture of 𝑃𝑙 , 𝑙 ∈ 𝑁,  with each 𝑃𝑙 GWUC2 and no two 

distributions𝑃𝑙 , 𝑃𝑘   cross on N. then P is GWUC2. 

 

Proof. Let 𝑘, 𝑙 ∈ 𝑁,  and g be the mixing p.m.f. By Chebyshev’s inequality 

  

∑ �̅�(𝑗) [(1 −
1

𝜇
)

𝑖

]

∞

𝑗=𝑚

= [∑ (1 −
1

𝜇𝑘
)

𝑖

𝑔(𝑘)

∞

𝑘=0

] [ ∑ ∑ 𝑃�̅�(𝑗)𝑔(𝑙)

∞

𝑙=0

∞

𝑗=𝑚

]                  

= {∑ [(1 −
1

𝜇𝑘
)

𝑖

𝑔(𝑘)]

∞

𝑘=0

} [ ∑ ∑ 𝑃�̅�(𝑗)𝑔(𝑙)

∞

𝑙=0

∞

𝑗=𝑚

] 

                                        ≤ ∑ ∑ [𝑃�̅�(𝑗) (1 −
1

𝜇𝑙
)

𝑖

]

∞

𝑙=0

∞

𝑗=𝑚

𝑔(𝑙) 

                                          ≤ ∑ ∑ [𝑃�̅�(𝑗) (1 −
1

𝜇𝑙
)

𝑖

]

∞

𝑙=0

∞

𝑗=𝑚

𝑔(𝑙) 

                                           = ∑ �̅�(𝑖 + 𝑗)

∞

𝑗=𝑚

, 

 

which implies that F is GWUC2. 

Theorem 3.13 

Suppose F is the mixture of  𝐹∝ , ∝≥ 𝑜 , with each 𝐹∝ EWUC2, and 𝐹∝ no crossing 

property on (0,∞), then F is EWUC2. 

 

Proof. By the Chebyshev’s inequality for similarly ordered functions (Hardy, et 

al., 1952, Theorem 4.3) 
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𝜇 ∫ 𝑒
−𝑥
𝜇  

𝑢

0

𝑑𝑥 = ∫ 𝜇𝛼

∞

𝑜

 𝑑𝐺(∝) ∫ ∫ 𝑒
−𝑥
𝜇∝

∞

0

𝑢

0

 𝑑𝐺(∝) 𝑑𝑥 

≤  ∫ ∫ 𝜇𝛼

∞

0

𝑢

0

 𝑒
−𝑥
𝜇∝  𝑑𝐺(∝)𝑑𝑥 

              ≤ ∫ ∫ ∫    �̅�∝(𝑥 + 𝑡)

∞

0

𝑢

0

∞

0

 𝑑𝐺(∝)𝑑𝑥𝑑𝑡 

≡ ∫ ∫ �̅�(𝑥 + 𝑡)

∞

0

𝑢

0

𝑑𝑥 𝑑𝑡, 

 

Then F is EWUA2. 

Theorem 3.14 

Let P be a mixture of 𝑃𝑙 , 𝑙 ∈ 𝑁,  with each 𝑃𝑙 GWUA2 and no two 

distributions 𝑃𝑙 , 𝑃𝑘   cross on N. then P is GWUA2. 

 

Proof. Let 𝑘, 𝑙 ∈ 𝑁,  and g be the mixing p.m.f. By Cebyshev’s inequality  

 

𝜇 [∑ (1 −
1

𝜇
)

𝑚

𝑖=0

𝑖

] = [∑ ∑ (1 −
1

𝜇𝑘
)

𝑚

𝑖=0

𝑖

𝑔(𝑘)

∞

𝑘=0

] [∑ 𝜇𝑙𝑔(𝑙)

∞

𝑙=0

] 

= {∑ [∑ (1 −
1

𝜇𝑘
)

𝑚

𝑖=0

𝑖

𝑔(𝑘)]

∞

𝑘=0

} [∑ 𝜇𝑙𝑔(𝑙)

∞

𝑙=0

] 

                                            ≤ ∑ [∑ 𝜇𝑘 (1 −
1

𝜇𝑘
)

𝑚

𝑖=0

𝑖

]

∞

𝑘=0

𝑔(𝑘) 

≤ ∑ [∑ ∑ 𝑃𝑘
̅̅ ̅(𝑗)

∞

𝑗=0

(1 −
1

𝜇𝑘
)

𝑚

𝑖=0

𝑖

]

∞

𝑘=0

𝑔(𝑘) 

≤ ∑ ∑ ∑ [𝑃𝑘
̅̅ ̅(𝑗) (1 −

1

𝜇𝑘
)

𝑖

]

∞

𝑘=0

𝑚

𝑖=0

∞

𝑗=0

𝑔(𝑘) 

                                            = ∑ ∑ �̅�(𝑖 + 𝑗)

𝑚

𝑖=0

,

∞

𝑗=0

 

 

which implies that F is GWUA2. 
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4 Testing Exponentiality Against𝐄𝐁𝐔𝐂(𝟐) 
 

In the context of reliability and life testing, the failure rate of a life 

distribution plays an important role for stochastic modeling and classification. 

Being a ratio of probability density function and the corresponding survival 

function, it uniquely determines the underlying distribution and exhibits different 

monotonic Behaviors. The concept of the ageless notion is equivalent to the 

phenomenon that age has no effect on the failure rate. Thus, the ageless property 

is equal to constant failure rate, that is, the distribution is exponential. Hence, 

testing non-parametric classes is done by testing exponentiality versus some kind 

of classes. This applies to many non-parametric classes such as the NBU, NBUC, 

NBUCA and NBUE, among others. 

Moments inequalities for some classes of life distributions have been 

recently appeared and hence have been used in testing. Ahmad (2001) used the 

new testing against IFR, NBU and NBUE. Testing IFRA, NBUC and DMRL 

based on moments inequalities have been studied by Ahmad and Mugdadi (2002). 

Abdul-Moniem (2007), discussed the test against EBUCA. Here, we will use the 

same methods that have been addressed for the class of EBUC(2), and apply it for 

testing.  

 

4.1 Moments Inequalities for 𝐄𝐁𝐔𝐂(𝟐) 

 

In the following, exponentiality against EBUC(2) based on the moment 

inequalities is tested.  

 

Theorem 4.1 

Suppose that F isEBUC(2) life distribution such that its𝜇𝑟+𝑠+4, the moment of 

order, is finite (r+s+4) for some integers r and s , then the following moment 

inequality holds 

 
 μ(r+s+4)

(r+s+4)!
≤ (≥)

μr+1μs+2

(s+2)!
.                                                                                        (10) 

 

Proof. We have, for any integer  𝑠 ≥ 0: 

∫ 𝑥𝑠

∞

0

�̅�(𝑥)𝑑𝑥 = 𝐸 [∫ 𝑥𝑠

𝑥

0

𝑑𝑥] =
1

𝑠 + 1
𝐸(𝑥𝑠+1) =

𝜇(𝑠+1)

𝑠 + 1
. 

 

Multiplying both sides of (6) by 𝑥𝑟𝑢𝑠and integrating we get, R.H.S 

∫ ∫ 𝑥𝑟𝑢𝑠𝑒
−𝑥
𝜇 ∫ �̅�(𝑡) 𝑑𝑡𝑑𝑢𝑑𝑥

∞

𝑢

∞

0

∞

0
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= ∫ 𝑥𝑟𝑒
−𝑥
𝜇 ∫ 𝑢𝑠 ∫ �̅�(𝑡) 𝑑𝑡𝑑𝑢𝑑𝑥

∞

𝑢

∞

0

∞

0

 

                                               = 𝑟! 𝜇𝑟+1 ∫ �̅�(𝑢)

∞

0

∫ 𝑡𝑠𝑑𝑡𝑑𝑢

𝑢

0

 

                                                =
𝑟! 𝜇𝑟+1

s + 1
∫ 𝑢𝑠+1�̅�(𝑡) 𝑑𝑢

∞

0

 

                                                =
𝑟! μr+1μs+2

(s + 1)(s + 2)
. 

 

Using methods similar to those used in proving "Theorem 10" of Mugdadi and 

Ahmad (2005), it can be shown that the left-hand side is equal to  

 
r! s! μ(r+s+4)

(r + s + 4)!
. 

 

Now by using inequality (10), can be tested the null hypothesis 

H0: F is exponential versus,  

H1: F is EBUC(2) and not exponential. 

According to inequality (10), we set the following measure of departure from Ho: 

 

δ(r, s) =
μr+1μs+2

(s + 2)!
−

μ(r+s+4)

(r + s + 4)!
.                                                                             (11) 

                                                                                        

The choice of r and s is a question that needs to be addressed. There are 

two possible routes. Either to choose a small values like r = 0, s = 0 or s = 1, r = 1 

to make calculations simple or to try to find the values of r and s that give the 

maximum power or efficiency if we have some belief about an alternative. To 

choose r and s that maximize the power one can use empirical calculations by 

simulating sampling from an alternative distribution calculating the empirical 

powers for various sample sizes at r = 0, 1, … and s = 0, 1, … etc. and choose the 

values of r and s that give the best power, see, Shokry (2009). 

Putting r = s =0 in (11), the following may be used as a measure of departure 

from 𝐻0 in favor of 𝐻1     

                                              

𝛿𝐸 = 12μ  μ2 − μ4 ≥ (≤)0.                                                                                           (12) 
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Note that under H0: δE = 0, while under  H1: δE > (<)0. Thus to estimate 𝛿𝐸 by 

𝛿𝐸. Let X1, …, Xn be a random sample from F and 𝜇 is estimated by �̅�, where �̅� =
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
 is the usual sample mean. Then, 𝛿𝐸 is given by using (12) as 

  

𝛿𝐸 =
1

𝑛2
∑ ∑ {12 𝑋𝑖 𝑋 𝑗

2 − 𝑋 𝑖
4}

𝑗𝑖

 

= 𝑛−2 ∑ ∑ ∅(𝑋𝑖 , 𝑋𝑗 ),

𝑗𝑖

 

where  

∅(𝑋𝑖 , 𝑋𝑗 ) = 12 𝑋𝑖 𝑋 𝑗
2 − 𝑋 𝑖

4, 

 

to make the test statistics scale invariant, let.  

∆̂=
�̂�𝐸

�̅�4  , then                                                                                                                    (1.3)                                         

 

define the symmetric kernel  

𝜂(𝑋𝑖 , 𝑋𝑗 ) =
1

2!
∑ ∅(𝑋𝑖 , 𝑋𝑗 )

𝑅

, 

 

where the sum is over all arrangements of 𝑋𝑖 , 𝑋𝑗 . Then, ∆̂ in (13) is equivalent to 

the classical U-statistics, cf., Lee (1990). 

 

𝑈𝑛 =
1

(𝑛
3
)

∑ 𝜂(𝑋𝑖 , 𝑋𝑗 )

𝑖<𝑗

. 

 

The following theorem summarizes the large sample properties of ∆̂ or 𝑈𝑛. 

 

Theorem 4.2 

As 𝑛 → ∞, √𝑛(∆̂ − ∆) is asymptotically normal with mean 0 and variance 𝜎2, 
where   

𝜎2 = 𝑉𝑎𝑟{12𝑋𝜇2 + 12𝑋2𝜇 − 𝑋4 − 𝜇4}  

 Under 𝐻0 the variance reduces to  

𝜎2 = 𝑉𝑎𝑟{24𝑋 + 12𝑋2 − 𝑋4 − 24} = 24768 

 

Proof. The proof follows from the standard theory of U-statistics, see, e.g., Lee 

(1989). Using direct calculations, the mean and variance of 𝑈𝑛are found to be, 

respectively as follows:  

 

𝜇 = 𝐸{𝐸(∅(𝑋1, 𝑋2)|𝑋1) + 𝐸(∅(𝑋1, 𝑋2)|𝑋2)}, 
𝜎2 = 𝑉𝑎𝑟{𝐸(∅(𝑋1, 𝑋2)|𝑋1) + 𝐸(∅(𝑋1, 𝑋2)|𝑋2)}, 
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where 

𝐸(∅(𝑋1, 𝑋2)|𝑋1) = 12𝑋1𝜇2 − 𝑋1
4, 

𝐸(∅(𝑋1, 𝑋2)|𝑋2) = 12𝜇𝑋2
2 − 𝜇4, 

 

and the result follows directly. 

𝜂(𝑋) = 12𝑋𝜇2 + 12𝑋2𝜇 − 𝜇4 − 𝑋4. 

 

Under 𝐻0, 

𝜂0(𝑋) = 24𝑋 + 12𝑋2 − 𝑋4 − 24.                                                                              (14)  
 

From (14), it is clear that 𝐸[𝜂0(𝑋)] = 0 and 

𝜎2 = 𝐸 [(𝜂0(𝑋))
2

] = 24768 .                                                                                     (15) 

 

4.2 Pitman Asymptotic Efficiency (PAE) 

The pitman asymptotic efficiency of the class EBUC(2) was calculated using the 

Linear Failure Rate (LFR), Makeham, and Weibull distributions. The Pitman 

efficiency is defined by 

  

𝑃𝐴𝐸 =
𝜇′(𝜃)

𝜎0
=

1

𝜎0
|
𝜕∆

𝜕𝜃
|

𝜃→𝜃0

 

=
1

𝜎0

[12𝜇𝜇2
′ + 12𝜇′ − 𝜇4

′ ] 

                                           =
1

24768
[12𝜇2

′ + 24𝜇′ − 𝜇4
′ ]   ,                                       (16) 

 

where 𝜇′(𝜃)  denote the partial derivative with respect to 𝜃. 
The following three families of alternatives are often used for efficiency 

calculation 

• Linear Failure Rate:�̅�(𝑥) = exp (−𝑥 −
𝜃𝑥2

2
) ;  𝜃 > 0, 𝑥 ≥ 0. 

• Makeham: �̅�(𝑥) = exp(−𝑥 − 𝜃(𝑥 + exp(−𝑥) − 1)) ;  𝜃 > 0, 𝑥 ≥ 0.   

• Weibull: �̅�(𝑥) = exp(−𝑥𝜃) ;  𝜃 > 1, 𝑥 ≥ 0. 
 The null exponential is attained at θ= 0, 0 and 1, respectively. 

The efficiency calculation for the above three alternatives are tabulated in table 

(1). 

 

Table (1): Pitman Asymptotic Efficiency 

Distribution Efficiency 

LFR 0.914 

Makeham 0.238 

Weibull 0.572 
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4.3 Critical Values  

The critical value of ∆̂ in (13) based on 2000 simulated samples 5(1)40 are 

calculated. Table (2) gives the upper percentile value for 95%, 98%, 99%. 

 

 

Table (2): critical value of ∆̂ 

 
n 95% 98% 99% 

5 12.812 13.122 13.195 

6 12.328 12.555 12.663 

7 11.805  12.118 12.267 

8 11.138 11.385 11.465 

9 10.65  10.878 10.935 

10 10.551  10.742 10.839 

11 10.426  10.667 10.751 

12 10.395  10.591 10.701 

13 9.982  10.176 10.292 

14 9.864  10.134 10.228 

15 9.5  9.712 9.772 

16 9.37  9.677 9.767 

17 9.715  9.925 10.009 

18 8.947  9.185 9.317 

19 8.932  9.201 9.295 

20 8.764  8.981 9.084 

21 8.779  9.103 9.209 

22 8.482  8.702 8.786 

23 8.525  8.802 8.839 

24 8.374  8.691 8.755 

25 8.306  8.553 8.64 

26 8.122  8.416 8.488 

27 8.227  8.548 8.617 

28 8.068  8.228 8.337 

29 7.677  7.915 8.01 

30 7.754  7.986 8.065 

31 7.718  7.998 8.07 

32 7.594  7.843 7.923 

33 7.493  7.688 7.82 

34 6.965  7.17 7.283 

35 7.201  7.437 7.54 

36 7.259  7.558 7.641 

37 7.267  7.447 7.529 

38 6.855  7.122 7.196 

39 6.842  7.243 7.171 

40 7.018  7.283 7.367 
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4.4 Applications  

1- The following data represent 39 liver cancer's patients taken from El Minia 

Cancer Center Ministry of Health, Egypt, who entered the center in (1999), 

Abdul-Moniem (2008). The ordered life times (in days) are: 

10, 14, 14, 14, 14, 14, 15, 17, 18, 20, 20, 20, 20, 20, 23, 23, 24, 26, 30, 30, 31, 40, 

49, 51, 52, 60, 61, 67, 71, 74, 75, 87, 96, 105, 107, 107, 107, 116, 150.  

It is found that the test statistics for the set data by using equation (13) is ∆̂=
−8.873 . This value leads to 𝐻0 is not rejected at the significance level 𝛼 = 0.05. 

See Table (2). Therefore the data has not EBUC(2) property. 

 

2- The following data set represents mileages for 19 military personnel that failed 

in service; see Abdul-Moniem (2008). 

162, 200, 271, 320, 393, 508, 539, 629, 706, 778, 884, 1003, 1101, 1182, 1463, 

1603, 1984, 2355, 2880. 

It is found that the test statistic for the data set by using equation (13) is 

∆̂= −7.368 . This value leads to H0 is not rejected at the significance levelα =
0.05. See, Table (2). Therefore the data set does not have not EBUC (2) property. 
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